Community Data Science Workshops (Core)/Day 3 Lecture
From CommunityData
Welcome to the Saturday lecture section of the Community Data Science Workshop Session 3! For about 140 minutes, we'll work through an example of a Python program end-to-end that answers of simple questions using data from the Wikipedia API via both a lecture and hand-on exercises.
Resources:
- Screencast/recording of the Winter 2020 lecture (859MB) — The file should be viewable in Firefox and many other browsers. If you have trouble playing it, you can download the VLC media player which will be a able to play it on Windows, OSX, or GNU/Linux.
Material for the lecture[edit]
For the lecture, you will need two files. Download both of these to your computer by using right or control click on the link and then using Save as or Save link as. Keep track of where you put the files.
- https://github.com/CommunityDataScienceCollective/harrypotter-wikipedia-cdsw/archive/master.zip
- http://communitydata.science/~mako/hp_wiki.tsv
Overview of the day[edit]
- Lecture
- Our philosophy around data analysis and visualization
- Introduce some new programming tools!
- We're going to walk through some analysis of edits to Harry Potter in Wikipedia, start to finish
- We'll focus on manipulating data in Python
- Visualizing things in Google Docs
- Lunch (Tofu Bánh mì!)
- Project based work
- Data.seattle.gov
- Your own projects!
- Review Cafe
- Extension of morning material
- Wrap-up!
Lecture outline[edit]
Step 1: Pre-Requisites
- My philosophy about data analysis: use the tools you have
- Four things in Python I have to teach you now and one more thing later):
- while loops
- infinite loops
- loops with a greater than or less than
- break / continue
- "\t".join()
- defining your own functions with
def foo(argument):
andreturn bar
- The
.update()
function that is associated with dictionaries.
- while loops
- opening and writing to a file using open()
Step 2: Walking through a Program
- Walk-through of
build_harry_potter_dataset.ipynb
- Look at dataset with Jupyter and/or in spreadsheet
Step 3: Loading Data Back In
- Load data into Python
- review of opening files
- we can also open them for reading with
open('file', 'r', encoding="utf-8")
- we can also open them for reading with
- csv.DictReader()
- review of opening files
- Basic counting:
harrypotter_anon_edits.ipynb
- Answer question: What proportion of edits to Wikipedia Harry Potter articles are minor?
- Count the number of minor edits and calculate proportion
- Answer question: What proportion of edits to Wikipedia Harry Potter articles are minor?
- Looking at time series data
harrypotter_edit_trend.ipynb
- "Bin" data by day to generate the trend line
- Exporting and visualizing data
- Export dataset on edits over time
- Export dataset on articles over users
- Load data into Google Docs
Older Resources[edit]
- Screencast/recording of the 2015 lecture (934MB) — The file should be viewable in Firefox and many other browsers. If you have trouble playing it, you can download the VLC media player which will be a able to play it on Windows, OSX, or GNU/Linux.