Human Centered Data Science (Fall 2019)

From CommunityData
Human Centered Data Science
DATA 512 - UW Interdisciplinary Data Science Masters Program - Thursdays 5:00-9:50pm in Thompson Hall room 134.
Principal instructor
Jonathan T. Morgan (jmo25 at uw dot edu)
Co-instructor
Yihan Yu
Course Website
This wiki page is the canonical information resource for DATA512. All other course-related information will be linked on this page. We will use Canvas for announcements, file hosting, and submitting reading reflections, graded in-class assignments, and other programming and writing assignments. We will use Slack for Q&A and general discussion.
Course Description
Human Centered Data Science focuses on fundamental principles of data science and its human implications, including research ethics; data privacy; legal frameworks; algorithmic bias, transparency, fairness and accountability; data provenance, curation, preservation, and reproducibility; user experience design and research for big data; human computation; effective oral, written, and visual scientific communication; and societal impacts of data science.[1]

Overview and learning objectives[edit]

The format of the class will be a mix of lecture, discussion, in-class activities, and qualitative and quantitative research assignments. Students will work in small groups for in-class activities, and work independently on all class project deliverables and homework assignments. Instructors will provide guidance in completing the exercises each week.

By the end of this course, students will be able to:

  • Analyze large and complex data effectively and ethically with an understanding of human, societal, and socio-technical contexts.
  • Take into account the ethical, social, and legal considerations when designing algorithms and performing large-scale data analysis.
  • Combine quantitative and qualitative research methods to generate critical insights into human behavior.
  • Discuss and evaluate ethical, social and legal trade-offs of different data analysis, testing, curation, and sharing methods.

Course resources[edit]

All pages and files on this wiki that are related to the Fall 2018 edition of DATA 512: Human-Centered Data Science are listed in Category:HCDS (Fall 2019).

Office hours[edit]

  • Yihan Yu: Monday 5-6:30pm (Sieg Hall #129)
  • Jonathan Morgan: Thursday 3:30 - 4:30 Communications (CMU) #333


Lecture slides[edit]

Slides for weekly lectures will be available in PDF form on in the Files section of Canvas, generally within 24 hours of each course session


Schedule[edit]

Direct link: Human Centered Data Science (Fall 2019)/Schedule

Course schedule (click to expand)


Week 1: September 26[edit]

Introduction to Human Centered Data Science
What is data science? What is human centered? What is human centered data science?
Assignments due
Agenda
  • Syllabus review
  • Pre-course survey results
  • What do we mean by data science?
  • What do we mean by human centered?
  • How does human centered design relate to data science?
  • In-class activity
  • Intro to assignment 1: Data Curation
Homework assigned
  • Read and reflect on both:
Resources




Week 2: October 3[edit]

Reproducibility and Accountability
data curation, preservation, documentation, and archiving; best practices for open scientific research
Assignments due
  • Week 1 reading reflection
  • A1: Data curation
Agenda
  • Reading reflection discussion
  • Assignment 1 review & reflection
  • A primer on copyright, licensing, and hosting for code and data
  • Introduction to replicability, reproducibility, and open research
  • In-class activity
  • Intro to assignment 2: Bias in data
Homework assigned
Resources




Week 3: October 10[edit]

Interrogating datasets
causes and consequences of bias in data; best practices for selecting, describing, and implementing training data
Assignments due
  • Week 2 reading reflection
Agenda
  • Reading reflection review
  • Sources and consequences of bias in data collection, processing, and re-use
  • In-class activity
Homework assigned
  • Read both, reflect on one:
Resources




Week 4: October 17[edit]

Introduction to qualitative and mixed-methods research
Big data vs thick data; integrating qualitative research methods into data science practice; crowdsourcing
Assignments due
  • Reading reflection
  • A2: Bias in data
Agenda
  • Reading reflection reflection
  • Overview of qualitative research
  • Introduction to ethnography
  • In-class activity: explaining art to aliens
  • Mixed methods research and data science
  • An introduction to crowdwork
  • Overview of assignment 3: Crowdwork ethnography
Homework assigned
Resources





Week 5: October 24[edit]

Research ethics for big data
privacy, informed consent and user treatment
Assignments due
  • Reading reflection
Agenda
  • Reading reflection review
  • Guest lecture
  • A2 retrospective
  • Final project deliverables and timeline
  • A brief history of research ethics in the United States


Homework assigned
  • Read and reflect: Gray, M. L., & Suri, S. (2019). Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass. Eamon Dolan Books. (PDF available on Canvas)
Resources




Week 6: October 31[edit]

Data science and society
power, data, and society; ethics of crowdwork
Assignments due
  • Reading reflection
  • A3: Crowdwork ethnography
Agenda
  • Reading reflections
  • Assignment 3 review
  • Guest lecture: Stefania Druga
  • In-class activity
  • Introduction to assignment 4: Final project proposal
Homework assigned
  • Read both, reflect on one:
Resources




Week 7: November 7[edit]

Human centered machine learning
algorithmic fairness, transparency, and accountability; methods and contexts for algorithmic audits
Assignments due
  • Reading reflection
  • A4: Project proposal
Agenda
  • Reading reflection review
  • Algorithmic transparency, interpretability, and accountability
  • Auditing algorithms
  • In-class activity
  • Introduction to assignment 5: Final project proposal
Homework assigned
Resources




Week 8: November 14[edit]

User experience and data science
algorithmic interpretibility; human-centered methods for designing and evaluating algorithmic systems
Assignments due
  • Reading reflection
  • A5: Final project plan
Agenda
  • coming soon
Homework assigned
Resources




Week 9: November 21[edit]

Data science in context
Doing human centered datascience in product organizations; communicating and collaborating across roles and disciplines; HCDS industry trends and trajectories
Assignments due
  • Reading reflection
Agenda
  • Filling out course evaluation
  • Week 8 in-class activity report out
  • End of quarter logistics
  • Final project presentations and reports
  • Guest lecture: Rich Caruana, Microsoft Research
  • In-class activity (InterpretML): Harsha Nori, Microsoft


Homework assigned
Resources




Week 10: November 28 (No Class Session)[edit]

Assignments due
  • Reading reflection
Homework assigned
Resources




Week 11: December 5[edit]

Final presentations
presentation of student projects, course wrap up
Assignments due
  • Reading reflection
  • A5: Final presentation
Readings assigned
  • NONE
Homework assigned
  • NONE
Resources
  • NONE




Week 12: Finals Week (No Class Session)[edit]

  • NO CLASS
  • A7: FINAL PROJECT REPORT DUE BY 5:00PM on Tuesday, December 10 via Canvas
  • LATE PROJECT SUBMISSIONS NOT ACCEPTED.

Assignments[edit]

For details on individual assignments, see Human Centered Data Science (Fall 2019)/Assignments


Assignments are comprised of weekly in-class activities, weekly reading reflections, written assignments, and programming/data analysis assignments. Weekly in-class reading groups will discuss the assigned readings from the course and students are expected to have read the material in advance. In class activities each week are posted to Canvas and may require time outside of class to complete.

Unless otherwise noted, all assignments are due before 5pm on the following week's class.

Unless otherwise noted, all assignments are individual assignments.

Assignment timeline[edit]

Assignments due every week
  • In-class activities - 2 points (weekly): In-class activity output posted to Canvas (group or individual) within 24 hours of class session.
  • Reading reflections - 2 points (weekly): Reading reflections posted to Canvas (individual) before following class session.


Scheduled assignments
  • A1 - 5 points (due 10/3): Data curation (programming/analysis)
  • A2 - 10 points (due 10/17): Bias in data (programming/analysis)
  • A3 - 10 points (due 10/31): Crowdwork Ethnography (written)
  • A4 - 5 points (due 11/7): Final project proposal (written)
  • A5 - 5 points (due 11/14): Final project plan (written)
  • A6 - 10 points (due 12/5): Final project presentation (oral, slides)
  • A7 - 15 points (due 12/10): Final project report (programming/analysis, written)

more information...


Policies[edit]

The following general policies apply to this course.

Attendance and participation[edit]

Students are expected to attend class regularly. If you run into a conflict that requires you to be absent (for example, medical issues) feel free to reach out to the instructors. We will do our best to ensure that you don’t miss out, and treat your information as confidential.

If you miss class session, please do not ask the professor or TA what you missed during class; check the website or ask a classmate (best bet: use Slack). Graded in-class activities cannot be made up if you miss a class session (without prior approval or a specific accommodation--see below).

Grading[edit]

Active participation in class activities is one of the requirements of the course. You are expected to engage in group activities, class discussions, interactions with your peers, and constructive critiques as part of the course work. This will help you hone your communication and other professional skills. Correspondingly, working in groups or on teams is an essential part of all data science disciplines. As part of this course, you will be asked to provide feedback of your peers' work.


Individual assignments will have specific requirements listed on the assignment sheet, which the instructor will make available on the day the homework is assigned. If you have questions about how your assignment was graded, please see the TA or instructor.

Assignments and coursework[edit]

Grades will be determined as follows:

  • 20% in-class work
  • 20% reading reflections
  • 60% assignments

You are expected to produce work in all of the assignments that reflects the highest standards of professionalism. For written documents, this means proper spelling, grammar, and formatting.

By default, late assignments will not be accepted; if your assignment is late, you will receive a zero score. Again, if you run into an issue that necessitates an extension, please reach out. Final projects cannot be turned in late and are not eligible for any extension without prior written permission. Requests for special dispensation on final project due dates must be submitted to the instructor via email no less than 2 week before the final project deadline.

Academic integrity and plagiarism[edit]

Students are expected to adhere to rules around academic integrity. Simply stated, academic integrity means that you are to do your own work in all of your classes, unless collaboration is part of an assignment as defined in the course. In any case, you must be responsible for citing and acknowledging outside sources of ideas in work you submit.

Please be aware of the HCDE Department's and the UW's policies on plagiarism and academic misconduct: HCDE Academic Conduct policy. This policy will be strictly enforced.

The University takes academic integrity very seriously. Behaving with integrity is part of our responsibility to our shared learning community. If you’re uncertain about if something is academic misconduct, ask me. I am willing to discuss questions you might have.

Acts of academic misconduct may include but are not limited to:

  • Cheating (working collaboratively on quizzes/exams and discussion submissions, sharing answers and previewing quizzes/exams)
  • Plagiarism (representing the work of others as your own without giving appropriate credit to the original author(s))
  • Unauthorized collaboration (working with each other on assignments that are intended to be completed on an individual basis)

Concerns about these or other behaviors prohibited by the Student Conduct Code will be referred for investigation and adjudication by (include information for specific campus office).

Students found to have engaged in academic misconduct may receive a zero on the assignment (or other possible outcome).

Other academic integrity resources:

Disability accommodations[edit]

Your experience in this class is important to me. If you have already established accommodations with Disability Resources for Students (DRS), please communicate your approved accommodations to me at your earliest convenience so we can discuss your needs in this course.

If you have not yet established services through DRS, but have a temporary health condition or permanent disability that requires accommodations (conditions include but not limited to; mental health, attention-related, learning, vision, hearing, physical or health impacts), you are welcome to contact DRS at 206-543-8924 or uwdrs@uw.edu or disability.uw.edu. DRS offers resources and coordinates reasonable accommodations for students with disabilities and/or temporary health conditions. Reasonable accommodations are established through an interactive process between you, your instructor(s) and DRS. It is the policy and practice of the University of Washington to create inclusive and accessible learning environments consistent with federal and state law.

For more information on disability accommodations, and how to apply for one, please review UW's Disability Resources for Students.

Religious accommodations[edit]

Washington state law requires that UW develop a policy for accommodation of student absences or significant hardship due to reasons of faith or conscience, or for organized religious activities. The UW’s policy, including more information about how to request an accommodation, is available at Faculty Syllabus Guidelines and Resources. Accommodations must be requested within the first two weeks of this course using the Religious Accommodations Request form available at https://registrar.washington.edu/students/religious-accommodations-request/.

Conduct and safety[edit]

The University of Washington Student Conduct Code (WAC 478-121) defines prohibited academic and behavioral conduct and describes how the University holds students accountable as they pursue their academic goals. Allegations of misconduct by students may be referred to the appropriate campus office for investigation and resolution. More information can be found online at https://www.washington.edu/studentconduct/

Students are expected to treat each other, and the instructors, with respect. Students are prohibited from engaging in any kind of harassment or derogatory behavior, which includes offensive verbal comments or imagery related to gender, gender identity and expression, age, sexual orientation, disability, physical appearance, body size, race, ethnicity, or religion. In addition, students should not engage in any form of inappropriate physical contact or unwelcome sexual attention, and should respect each others’ right to privacy in regards to their personal life. In the event that you feel you (or another student) have been subject to a violation of this policy, please reach out to the instructors in whichever form you prefer.

This course takes place in the evening, during the darkest part of the year. Call SafeCampus at 206-685-7233 anytime – no matter where you work or study – to anonymously discuss safety and well-being concerns for yourself or others. SafeCampus’s team of caring professionals will provide individualized support, while discussing short- and long-term solutions and connecting you with additional resources when requested.

Disclaimer[edit]

This syllabus and all associated assignments, requirements, deadlines and procedures are subject to change.

References[edit]