Editing Statistics and Statistical Programming (Winter 2021)/Problem set 5

From CommunityData

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 66: Line 66:
'''Optional bonus statistical question'''
'''Optional bonus statistical question'''


You did a question about birthdays in the context of one of the textbook exercises for ''OpenIntro'' Chapter 3. Here's an opportunity to apply your knowledge and extend that exercise. Note that you can absolutely use R to help calculate the solutions to both parts of this problem. That said, it's a super famous problem and answers/examples are all over the internet, so if you want to challenge yourself, don't look at them while you're working on it! The only hint I'll give you is that you may find [https://en.wikipedia.org/wiki/Binomial_coefficient binomial coefficients] useful and the <code>choose()</code>) function can calculate them for you in R.
''You did a question about birthdays in the context of one of the textbook exercises for ''OpenIntro'' Chapter 3. Here's an opportunity to apply your knowledge and extend that exercise. Note that you can absolutely use R to help calculate the solutions to both parts of this problem. That said, it's a super famous problem and answers/examples are all over the internet, so if you want to challenge yourself, don't look at them while you're working on it! The only hint I'll give you is that you may find [https://en.wikipedia.org/wiki/Binomial_coefficient binomial coefficients] useful and the <code>choose()</code>) function can calculate them for you in R.''


# Imagine that there were 25 people in this class and that I offered you a choice between two bets: Bet #1 is determined by the flip of a fair coin. You can choose heads or tails and you win the bet if your choice turns out to be correct). Bet #2 is determined by whether any two members of that previous version of the class shared a birthday. If a birthday was shared I win the bet, and if no shared birthdays were shared you win the bet. Assuming you want the best chance of winning, which bet should you choose?
# Imagine that there were 25 people in this class and that I offered you a choice between two bets: Bet #1 is determined by the flip of a fair coin. You can choose heads or tails and you win the bet if your choice turns out to be correct). Bet #2 is determined by whether any two members of that previous version of the class shared a birthday. If a birthday was shared I win the bet, and if no shared birthdays were shared you win the bet. Assuming you want the best chance of winning, which bet should you choose?
# Now calculate the probability that any two members of our 5 person class share a birthday and compare this probability with the results of SQ2.1 above.
# Now calculate the probability that any two members of our 5 person class share a birthday and compare this probability with the results of SQ2.1 above.
Please note that all contributions to CommunityData are considered to be released under the Attribution-Share Alike 3.0 Unported (see CommunityData:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)