Editing Statistics and Statistical Programming (Fall 2020)/pset8

From CommunityData

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 41: Line 41:
* You may want/need to convert some of these variables to appropriate types/classes in order to fit a logistic model. I also recommend at least turning <code>year</code> into a factor and creating a centered version of the <code>age</code> variable (we can discuss this in class too).  
* You may want/need to convert some of these variables to appropriate types/classes in order to fit a logistic model. I also recommend at least turning <code>year</code> into a factor and creating a centered version of the <code>age</code> variable (we can discuss this in class too).  
* Be sure to state the alternative and null hypotheses related to the experimental treatment under consideration.
* Be sure to state the alternative and null hypotheses related to the experimental treatment under consideration.
* It's a good idea to include the following in the presentation and interpretation of logistic model results: (1) a tabular summary/report of your fitted model including any goodness of fit statistics you can extract from R; (2) a transformation of the coefficient estimating treatment effects into an "odds ratio"; (3) model-predicted probabilities for prototypical study participants. (''please note that examples for all of these are provided in [https://communitydata.science/~ads/teaching/2020/stats/r_tutorials/logistic_regression_interpretation.html Mako Hill's R tutorial on interpreting the results of logistic regression]]'')
* It's a good idea to include the following in the presentation and interpretation of logistic model results: (1) a tabular summary/report of your fitted model including any goodness of fit statistics you can extract from R; (2) a transformation of the coefficient estimating treatment effects into an "odds ratio"; (3) model-predicted probabilities for prototypical study participants. (''please note that examples for all of these are provided in [https://communitydata.science/~mako/2017-COM521/logistic_regression_interpretation.html Mako Hill's R tutorial on interpreting the results of logistic regression]]'')
* For the model-predicted probabilities, please estimate the treatment effects for the following hypothetical individuals:  
* For the model-predicted probabilities, please estimate the treatment effects for the following hypothetical individuals:  
** a 9-year old girl in 2015.
** a 9-year old girl in 2015.
Please note that all contributions to CommunityData are considered to be released under the Attribution-Share Alike 3.0 Unported (see CommunityData:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)