Human Centered Data Science (Fall 2018)/Schedule: Difference between revisions

From CommunityData
No edit summary
Line 195: Line 195:




;Resources
;Qualitative research methods resources


* WeArDynamo contributors. ''[http://wiki.wearedynamo.org/index.php?title=Basics_of_how_to_be_a_good_requester How to be a good requester]'' and ''[http://wiki.wearedynamo.org/index.php?title=Guidelines_for_Academic_Requesters Guidelines for Academic Requesters]''. Wearedynamo.org
;Wikipedia gender gap research resources
* Hill, B. M., & Shaw, A. (2013). ''[journals.plos.org/plosone/article?id=10.1371/journal.pone.0065782 The Wikipedia gender gap revisited: Characterizing survey response bias with propensity score estimation]''. PloS one, 8(6), e65782
* Shyong (Tony) K. Lam, Anuradha Uduwage, Zhenhua Dong, Shilad Sen, David R. Musicant, Loren Terveen, and John Riedl. 2011. ''[http://files.grouplens.org/papers/wp-gender-wikisym2011.pdf WP:clubhouse?: an exploration of Wikipedia's gender imbalance.]'' In Proceedings of the 7th International Symposium on Wikis and Open Collaboration (WikiSym '11). ACM, New York, NY, USA, 1-10. DOI=http://dx.doi.org/10.1145/2038558.2038560
* Shyong (Tony) K. Lam, Anuradha Uduwage, Zhenhua Dong, Shilad Sen, David R. Musicant, Loren Terveen, and John Riedl. 2011. ''[http://files.grouplens.org/papers/wp-gender-wikisym2011.pdf WP:clubhouse?: an exploration of Wikipedia's gender imbalance.]'' In Proceedings of the 7th International Symposium on Wikis and Open Collaboration (WikiSym '11). ACM, New York, NY, USA, 1-10. DOI=http://dx.doi.org/10.1145/2038558.2038560
* Maximillian Klein. ''[http://whgi.wmflabs.org/gender-by-language.html Gender by Wikipedia Language]''. Wikidata Human Gender Indicators (WHGI), 2017.
* Maximillian Klein. ''[http://whgi.wmflabs.org/gender-by-language.html Gender by Wikipedia Language]''. Wikidata Human Gender Indicators (WHGI), 2017.
* Source: Wagner, C., Garcia, D., Jadidi, M., & Strohmaier, M. (2015, April). ''[https://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/viewFile/10585/10528 It's a Man's Wikipedia? Assessing Gender Inequality in an Online Encyclopedia]''. In ICWSM (pp. 454-463).
* Benjamin Collier and Julia Bear. ''[https://static1.squarespace.com/static/521c8817e4b0dca2590b4591/t/523745abe4b05150ff027a6e/1379354027662/2012+-+Collier%2C+Bear+-+Conflict%2C+confidence%2C+or+criticism+an+empirical+examination+of+the+gender+gap+in+Wikipedia.pdf Conflict, criticism, or confidence: an empirical examination of the gender gap in wikipedia contributions]''. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work (CSCW '12). DOI: https://doi.org/10.1145/2145204.2145265
* Benjamin Collier and Julia Bear. ''[https://static1.squarespace.com/static/521c8817e4b0dca2590b4591/t/523745abe4b05150ff027a6e/1379354027662/2012+-+Collier%2C+Bear+-+Conflict%2C+confidence%2C+or+criticism+an+empirical+examination+of+the+gender+gap+in+Wikipedia.pdf Conflict, criticism, or confidence: an empirical examination of the gender gap in wikipedia contributions]''. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work (CSCW '12). DOI: https://doi.org/10.1145/2145204.2145265
* Christina Shane-Simpson, Kristen Gillespie-Lynch, Examining potential mechanisms underlying the Wikipedia gender gap through a collaborative editing task, In Computers in Human Behavior, Volume 66, 2017, https://doi.org/10.1016/j.chb.2016.09.043. (PDF on Canvas)
* Christina Shane-Simpson, Kristen Gillespie-Lynch, Examining potential mechanisms underlying the Wikipedia gender gap through a collaborative editing task, In Computers in Human Behavior, Volume 66, 2017, https://doi.org/10.1016/j.chb.2016.09.043. (PDF on Canvas)
* Amanda Menking and Ingrid Erickson. 2015. ''[https://upload.wikimedia.org/wikipedia/commons/7/77/The_Heart_Work_of_Wikipedia_Gendered,_Emotional_Labor_in_the_World%27s_Largest_Online_Encyclopedia.pdf The Heart Work of Wikipedia: Gendered, Emotional Labor in the World's Largest Online Encyclopedia]''. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). https://doi.org/10.1145/2702123.2702514  
* Amanda Menking and Ingrid Erickson. 2015. ''[https://upload.wikimedia.org/wikipedia/commons/7/77/The_Heart_Work_of_Wikipedia_Gendered,_Emotional_Labor_in_the_World%27s_Largest_Online_Encyclopedia.pdf The Heart Work of Wikipedia: Gendered, Emotional Labor in the World's Largest Online Encyclopedia]''. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). https://doi.org/10.1145/2702123.2702514  
;Crowdwork research resources
* WeArDynamo contributors. ''[http://wiki.wearedynamo.org/index.php?title=Basics_of_how_to_be_a_good_requester How to be a good requester]'' and ''[http://wiki.wearedynamo.org/index.php?title=Guidelines_for_Academic_Requesters Guidelines for Academic Requesters]''. Wearedynamo.org





Revision as of 20:01, 22 October 2018

This page is a work in progress.


Week 1: September 27

Day 1 plan

Day 1 slides

Introduction to Human Centered Data Science
What is data science? What is human centered? What is human centered data science?
Assignments due
Agenda
  • Syllabus review
  • Pre-course survey results
  • What do we mean by data science?
  • What do we mean by human centered?
  • How does human centered design relate to data science?
  • Looking ahead: Week 2 assignments and topics


Readings assigned
Homework assigned
  • Reading reflection
Resources




Week 2: October 4

Day 2 plan


Ethical considerations
privacy, informed consent and user treatment


Assignments due
  • Week 1 reading reflection
Agenda
  • Intro to assignment 1: Data Curation
  • A brief history of research ethics
  • Guest lecture: Javier Salido and Mark van Hollebeke, "A Practitioners View of Privacy & Data Protection"
  • Guest lecture: Javier Salido, "Differential Privacy"
  • Contextual Integrity in data science
  • Week 2 reading reflection


Readings assigned


Homework assigned
Resources




Week 3: October 11

Day 3 plan

Day 3 slides

Reproducibility and Accountability
data curation, preservation, documentation, and archiving; best practices for open scientific research
Assignments due
  • Week 2 reading reflection
Agenda
  • Six Provocations for Big Data: Review & Reflections
  • A primer on copyright, licensing, and hosting for code and data
  • Introduction to replicability, reproducibility, and open research
  • Reproducibility case study: fivethirtyeight.com
  • Group activity: assessing reproducibility in data journalism
  • Overview of Assignment 1: Data curation


Readings assigned
Homework assigned
  • Reading reflection
Resources


Assignment 1 Data curation resources





Week 4: October 18

Day 4 plan

Day 4 slides

Interrogating datasets
causes and consequences of bias in data; best practices for selecting, describing, and implementing training data


Assignments due
Agenda
  • Final project: Goal, timeline, and deliverables.
  • Overview of assignment 2: Bias in data
  • Reading reflections review
  • Sources of bias in datasets
  • Introduction to assignment 2: Bias in data
  • Sources of bias in data collection and processing
  • In-class exercise: assessing bias in training data


Readings assigned (Read both, reflect on one)
Homework assigned


Resources




Week 5: October 25

Day 5 plan


Introduction to mixed-methods research
Big data vs thick data; integrating qualitative research methods into data science practice; crowdsourcing


Assignments due
  • Reading reflection


Agenda
  • Assignment 1 review & reflection
  • Week 4 reading reflection discussion
  • Survey of qualitative research methods
  • Mixed-methods case study #1: The Wikipedia Gender Gap: causes & consequences
  • In-class activity: Automated Gender Recognition scenarios
  • Introduction to ethnography
  • Ethnographic research case study: Structured data on Wikimedia Commons
  • Introduction to crowdwork
  • Overview of Assignment 3: Crowdwork ethnography


Readings assigned (Read both, reflect on one)


Homework assigned


Qualitative research methods resources
Wikipedia gender gap research resources
Crowdwork research resources





Week 6: November 1

Day 6 plan


Interrogating algorithms
algorithmic fairness, transparency, and accountability; methods and contexts for algorithmic audits
Assignments due
  • Reading reflection
  • A2: Bias in data
Agenda
  • Reading reflections
  • Ethical implications of crowdwork
  • Algorithmic transparency, interpretability, and accountability
  • Auditing algorithms
  • In-class activity: auditing the Perspective API


Readings assigned
  • to come


Homework assigned
  • Reading reflection


Resources





Week 7: November 8

Day 7 plan

Critical approaches to data science
power, data, and society; ethics of crowdwork


Assignments due
  • Reading reflection
  • A3: Crowdwork ethnography


Agenda
  • Guest lecture: Rochelle LaPlante


Readings assigned (read both, reflect on one)
Homework assigned


Resources





Week 8: November 15

Day 8 plan


Human-centered algorithm design
algorithmic interpretibility; human-centered methods for designing and evaluating algorithmic systems


Assignments due
  • Reading reflection


Agenda
  • Final project overview & examples
  • Guest Lecture: Kelly Franznick, Blink UX
  • Reading reflections
  • Human-centered algorithm design
  • design process
  • user-driven evaluation
  • design patterns & anti-patterns


Readings assigned
Homework assigned
  • Reading reflection
Resources





Week 9: November 22 (No Class Session)

Day 9 plan

Data science for social good
Community-based and participatory approaches to data science; Using data science for society's benefit
Assignments due
  • Reading reflection
  • A4: Final project plan
Agenda
  • Reading reflections discussion
  • Feedback on Final Project Plans
  • Guest lecture: Steven Drucker (Microsoft Research)
  • UI patterns & UX considerations for ML/data-driven applications
  • Final project presentation: what to expect
  • In-class activity: final project peer review


Readings assigned
Homework assigned
  • Reading reflection
Resources





Week 10: November 29

Day 10 plan


User experience and big data
Design considerations for machine learning applications; human centered data visualization; data storytelling


Assignments due
  • Reading reflection


Agenda
  • Reading reflections discussion
  • Feedback on Final Project Plans
  • Guest lecture: Steven Drucker (Microsoft Research)
  • UI patterns & UX considerations for ML/data-driven applications
  • Final project presentation: what to expect
  • In-class activity: final project peer review


Readings assigned


Homework assigned
  • Reading reflection
  • A5: Final presentation
Resources




Week 11: December 6

Day 11 plan

Final presentations
course wrap up, presentation of student projects


Assignments due
  • Reading reflection
  • A5: Final presentation


Agenda
  • Student final presentations
  • Course wrap-up


Readings assigned
  • none!
Homework assigned
  • none!
Resources
  • one




Week 12: Finals Week (No Class Session)

  • NO CLASS
  • A6: FINAL PROJECT REPORT DUE BY 11:59PM on Sunday, December 9
  • LATE PROJECT SUBMISSIONS NOT ACCEPTED.