Not logged in
Talk
Contributions
Create account
Log in
Navigation
Main page
About
People
Publications
Teaching
Resources
Research Blog
Wiki Functions
Recent changes
Help
Licensing
Page
Discussion
Edit
View history
Editing
Community Data Science Course (Spring 2017)
(section)
From CommunityData
Jump to:
navigation
,
search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Paper and Code ==== Your final project should include detailed information on: * The problem or area you have identified and enough background to understand the rest of your work and its importance or relevance. * Your research question(s) and/or hypotheses. * The methods, data, and approach that you used to collect the data plus information on why you think this was appropriate way to approach your question(s). * The results and findings including numbers, tables, graphics, and figures. * A discussion of limitations for your work and how you might improve them. If you want inspiration for how people use data science to communicate this kinds of findings broadly and effectively, take a look at great sources of data journalism including [http://fivethirtyeight.com/ Five Thirty Eight] or [http://www.nytimes.com/upshot/ The Upshot at the New York Times]. Both of these publish a large amount of excellent examples of data analysis aimed at broader non-technical audiences like the ones you'll be communicating with and quite a bit of their work is actually done using Python and web APIs! A simple Five Thirty Eight story will include a clear question, a brief overview of the data sources and method, a figure or two plus several paragraphs walking through the results, followed by a nice conclusion. I'm asking you to try to produce something roughly similar. Keep in mind that most stories on Five Thirty Eight are under 1000 words and I'm giving up to 4,500 words to show me what you've learned. As a result, you should do ''more'' than FiveThirtyEight does in a single story. You can ask and answer more questions, you can provide more background, context, and justification, you can provide more details on your methods and data sources, you can show us more graphs, you can discuss the implications of your findings more. Use the space I've given you to show off what you've done and what you've learned! Finally, you should also share with me the full Python source code you used to collect the data as well as the data set itself. Your code along will not form a large portion of your final grade. Rather, I will focus on the degree to which you have been successful at answering the ''substantive'' questions you have identified. At least 25% of your grade for this project will be determined by the visualizations and tables in your report. Good visualizations should "stand alone" and motivate the core results in your paper all by themselves. A good question to keep in mind is "could I tell this story with the visualizations and a tweet?"
Summary:
Please note that all contributions to CommunityData are considered to be released under the Attribution-Share Alike 3.0 Unported (see
CommunityData:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Tools
What links here
Related changes
Special pages
Page information