Not logged in
Talk
Contributions
Create account
Log in
Navigation
Main page
About
People
Publications
Teaching
Resources
Research Blog
Wiki Functions
Recent changes
Help
Licensing
Page
Discussion
Edit
View history
Editing
Community Data Science Course (Spring 2016)
(section)
From CommunityData
Jump to:
navigation
,
search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Readings == This class is going to be a studio and project based class. Although we will not rely very heavily on readings or discussing them in depth in class, I'm strongly recommending a book that will cover the material we go over in class and which will provide a reference work for you to refer to: # '''[http://www.pythonlearn.com/book.php Python for Informatics: Exploring Information]''' by Charles Severance. The book is available online for free but you can also buy a physical copy of the book [http://www.amazon.com/gp/product/1492339245/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1492339245&linkCode=as2&tag=drchu02-20 from Amazon] or get an electronic copy from the [http://www.amazon.com/dp/B00K0O8HFQ Kindle Store]. According to the book's website: "The goal of this book is to provide an Informatics-oriented introduction to programming. The primary difference between a computer science approach and the Informatics approach taken in this book is a greater focus on using Python to solve data analysis problems common in the world of Informatics." There will still be a few readings throughout the semester including at least the following: # Chapter 2 ("How to Keep Score") of [http://www.amazon.com/Lean-Analytics-Better-Startup-Faster/dp/1449335675 Lean Analytics] by Alistair Croll and Benjamin Yoskovitz. # Chapters 1 and 2 of [http://masteringmetrics.com/ Mastering Metrics] by Joshua D. Angrist and Jorn-Steffen Pischke. # Several excellent uses of data in articles from [http://www.fivethirtyeight.com FiveThirtyEight] and similar sources. If you run across a particularly great example of a story told with data, please pass it along! For book chapters, I'll make pdfs available at least 1 week ahead of time. In general, you should expect to spend an hour or less reading per week and 6 or more hours a week on programming tasks.
Summary:
Please note that all contributions to CommunityData are considered to be released under the Attribution-Share Alike 3.0 Unported (see
CommunityData:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Tools
What links here
Related changes
Special pages
Page information