Not logged in
Talk
Contributions
Create account
Log in
Navigation
Main page
About
People
Publications
Teaching
Resources
Research Blog
Wiki Functions
Recent changes
Help
Licensing
Page
Discussion
Edit
View history
Editing
Community Data Science Course (Spring 2017)
(section)
From CommunityData
Jump to:
navigation
,
search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Grades === Grades in this class are based on a rating scale. Rating-scale grades are based on the faculty member's assessment of each assignment as opposed to a calculation from earned and possible points. The broad criteria for the ratings are given below. The ratings for some assignments may be multiplied by a constant (e.g. 2 or 3) so as to count more toward the final grade. The final grade is calculated as the average of all ratings. ;4.0 - 3.9: Excellent and exceptional work for a graduate student. Work at this level is extraordinarily thorough, well reasoned, methodologically sophisticated, and well written. Work is of good professional quality, shows an incisive understanding of digital media-related issues and demonstrates clear recognition of appropriate analytical approaches to digital media challenges and opportunities. ''Clients who received a deliverable of this quality would likely develop loyalty toward the vendor to the exclusion of other vendors.'' ;3.8 - 3.7: Strong work for a graduate student. Work at this level shows some signs of creativity, is thorough and well-reasoned, indicates strong understanding of appropriate methodological or analytical approaches, and demonstrates clear recognition and good understanding of salient digital media-related challenges and opportunities. ''Clients who received a deliverable of this quality would likely recommend this vendor to others and consider a longer-term engagement.'' ;3.6 - 3.5: Competent and sound work for a graduate student; well reasoned and thorough, methodologically sound, but not especially creative or insightful or technically sophisticated; shows adequate understanding of digital media-related challenges and opportunities, although that understanding may be somewhat incomplete. This is the graduate student grade that indicates neither unusual strength nor exceptional weakness. ''Clients who received a deliverable of this quality would likely agree to repeat business with this vendor.'' ;3.3 - 3.4: Adequate work for a graduate student even though some weaknesses are evident. Moderately thorough and well reasoned, but some indication that understanding of the important issues is less than complete and perhaps inadequate in other respects as well. Methodological or analytical approaches used are generally adequate but have one or more weaknesses or limitations. ''Clients who received a deliverable of this quality would likely entertain competitor vendors.'' ;3.0 - 3.2: Fair work for a graduate student; meets the minimal expectations for a graduate student in the course; understanding of salient issues is incomplete, methodological or analytical work performed in the course is minimally adequate. Overall performance, if consistent in graduate courses, would be in jeopardy of sustaining graduate status in "good standing." ''Clients who received a deliverable of this quality would likely pay the vendor in full but not seek further engagement.'' ;2.7 - 2.9: Borderline work for a graduate student; barely meets the minimal expectations for a graduate student in the course. Work is inadequately developed, important issues are misunderstood, and in many cases assignments are late or incomplete. This is the minimum grade needed to pass the course. ''Clients who received a deliverable of this quality would likely delay payment until one or more criteria were met.''
Summary:
Please note that all contributions to CommunityData are considered to be released under the Attribution-Share Alike 3.0 Unported (see
CommunityData:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Tools
What links here
Related changes
Special pages
Page information