Not logged in
Talk
Contributions
Create account
Log in
Navigation
Main page
About
People
Publications
Teaching
Resources
Research Blog
Wiki Functions
Recent changes
Help
Licensing
Page
Discussion
Edit
View history
Editing
Statistics and Statistical Programming (Winter 2021)
(section)
From CommunityData
Jump to:
navigation
,
search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Why statistical programming? Why R? == Some courses in statistics and quantitative methods do not emphasize statistical programming and rely on point-and-click tools like SPSS instead. Why bother learning R? By learning statistical programming you will gain a deeper understanding of both the principles behind your analysis techniques as well as the tools you use to apply those techniques. In addition, a solid grasp of statistical programming will prepare you to create reproducible research, avoid common errors, and enable both greater durability and validity of your work. Other programming languages are also well suited to statistics, including Stata and Python. Ultimately, I'm teaching R because R is ascendant (i.e., it is increasing and is well on its way to "taking over") and there was consensus among the faculty in the department who were likely to teach statistics classes in the future that this made the most sense. I also do quite a lot of my own statistical work with R, so that also guides my choice. That said, I opt to use and teach with R for a few reasons: * R is freely available and open source. * R is the most widely used package in statistics and several social scientific fields. * R (along with Stata) will be used in most of the advanced stats classes I hope you will take after this course. * R is better general purpose programming language than Stata which means that R programming skills will let you solve non-statistical problems and may make it easier to learn other programming languages like Python. For students with a strong psychometric focus or whose research will be limited to linear and logistic regression or ANOVA on small pre-collected datasets and similar, SPSS will likely be fine. R has a higher barrier to entry than SPSS but it's ceiling is much higher.
Summary:
Please note that all contributions to CommunityData are considered to be released under the Attribution-Share Alike 3.0 Unported (see
CommunityData:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:
Cancel
Editing help
(opens in new window)
Tools
What links here
Related changes
Special pages
Page information